201 research outputs found

    Three level atom optics in dipole traps and waveguides

    Full text link
    An analogy is explored between a setup of three atomic traps coupled via tunneling and an internal atomic three-level system interacting with two laser fields. Within this scenario we describe a STIRAP like process which allows to move an atom between the ground states of two trapping potentials and analyze its robustness. This analogy is extended to other robust and coherent transport schemes and to systems of more than a single atom. Finally it is applied to manipulate external degrees of freedom of atomic wave packets propagating in waveguides.Comment: 14 pages, 6 figures; submitted to special issue 'Quantum Control of Light and Matter' of Optics Communication

    Double barrier potentials for matter-wave gap solitons

    Full text link
    We investigate collisions of solitons of the gap type, supported by a lattice potential in repulsive Bose-Einstein condensates, with an effective double-barrier potential that resembles a Fabry-Perot cavity. We identify conditions under which the trapping of the entire incident soliton in the cavity is possible. Collisions of the incident soliton with an earlier trapped one are considered too. In the latter case, many outcomes of the collisions are identified, including merging, release of the trapped soliton with or without being replaced by the incoming one, and trapping of both solitons.Comment: 5 pages, 4 figure

    Microoptical Realization of Arrays of Selectively Addressable Dipole Traps: A Scalable Configuration for Quantum Computation with Atomic Qubits

    Get PDF
    We experimentally demonstrate novel structures for the realisation of registers of atomic qubits: We trap neutral atoms in one and two-dimensional arrays of far-detuned dipole traps obtained by focusing a red-detuned laser beam with a microfabricated array of microlenses. We are able to selectively address individual trap sites due to their large lateral separation of 125 mu m. We initialize and read out different internal states for the individual sites. We also create two interleaved sets of trap arrays with adjustable separation, as required for many proposed implementations of quantum gate operations

    Quantum computing with spatially delocalized qubits

    Get PDF
    We analyze the operation of quantum gates for neutral atoms with qubits that are delocalized in space, i.e., the computational basis states are defined by the presence of a neutral atom in the ground state of one out of two trapping potentials. The implementation of single qubit gates as well as a controlled phase gate between two qubits is discussed and explicit calculations are presented for rubidium atoms in optical microtraps. Furthermore, we show how multi-qubit highly entangled states can be created in this scheme.Comment: 4 pages, 4 figure

    Manipulating mesoscopic multipartite entanglement with atom-light interfaces

    Get PDF
    Entanglement between two macroscopic atomic ensembles induced by measurement on an ancillary light system has proven to be a powerful method for engineering quantum memories and quantum state transfer. Here we investigate the feasibility of such methods for generation, manipulation and detection of genuine multipartite entanglement between mesoscopic atomic ensembles. Our results extend in a non trivial way the EPR entanglement between two macroscopic gas samples reported experimentally in [B. Julsgaard, A. Kozhekin, and E. Polzik, Nature {\bf 413}, 400 (2001)]. We find that under realistic conditions, a second orthogonal light pulse interacting with the atomic samples, can modify and even reverse the entangling action of the first one leaving the samples in a separable state.Comment: 8 pages, 6 figure

    Towards Precision Laser Spectroscopy of Forbidden Transitions in Highly-Charged Ions

    Get PDF

    Atom Optics with Microfabricated Optical Elements

    Get PDF
    We introduce a new direction in the field of atom optics, atom interferometry, and neutral-atom quantum information processing. It is based on the use of microfabricated optical elements. With these elements versatile and integrated atom optical devices can be created in a compact fashion. This approach opens the possibility to scale, parallelize, and miniaturize atom optics for new investigations in fundamental research and application. It will lead to new, compact sources of ultracold atoms, compact sensors based on matter wave interference and new approaches towards quantum computing with neutral atoms. The exploitation of the unique features of the quantum mechanical behavior of matter waves and the capabilities of powerful state-of-the-art micro- and nanofabrication techniques lend this approach a special attraction

    Interferometer-Type Structures for Guided Atoms

    Get PDF
    We experimentally demonstrate interferometer-type guiding structures for neutral atoms based on dipole potentials created by micro-fabricated optical systems. As a central element we use an array of atom waveguides being formed by focusing a red-detuned laser beam with an array of cylindrical microlenses. Combining two of these arrays, we realize X-shaped beam splitters and more complex systems like the geometries for Mach-Zehnder and Michelson-type interferometers for atoms.Comment: 4 pages, 6 figure

    Coherence Properties of Guided-Atom Interferometers

    Full text link
    We present a detailed investigation of the coherence properties of beam splitters and Mach-Zehnder interferometers for guided atoms. It is demonstrated that such a setup permits coherent wave packet splitting and leads to the appearance of interference fringes. We study single-mode and thermal input states and show that even for thermal input states interference fringes can be clearly observed, thus demonstrating the multimode operation and the robustness of the interferometer.Comment: 4 pages, 4 figure
    • …
    corecore